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Abstract. We propose a method to locate saddle points
that is based on the interplay between the driving
coordinate and the restricted quasi-Newton algorithm.
The method locates the transition state using a reduced
potential-energy surface. The reduced potential-energy
surface is characterized by the set of driving coordinates.
The proposed algorithm starts at a point on the surface
that is slightly perturbed from either reactant or product
and, in principle, converges to the transition state.
Finally we give a special type of update Hessian matrix
formula that should be applied in optimizations carried
out on reduced potential-energy surfaces.
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1 Introduction

Transition-state theory is an approach to study the
mechanism and kinetics of chemical reactions. The
application of this theory basically consists of locating
the reactant, the product, and the corresponding tran-
sition state on the potential-energy surface (PES)
associated with the elementary reaction under consider-
ation. The reactant and the product are associated with
minima, whereas the transition state is associated with a
first-order saddle point [1].

The location of a saddle point is an open question;
however, there are a set of powerful methods such that
in most of the cases the transition state is reached
without effort. A good review of methods for locating
transition states is given by Schlegel [2].

Using the classification of the algorithms to locate
transition states given by Schlegel [2], the coordinate-
driving technique combined with quasi-Newton methods
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and walking up valleys are the most widely used tech-
niques to find saddle points. In particular, the eigen-
vector-following approach can be seen as a combination
of walking up valleys and quasi-Newton optimization
[3,4,5,6,7,8,9,10, 11, 12, 13].

In the driving-coordinate technique one assumes that
the reaction under consideration can be characterized by
a coordinate or by a small subset of coordinates. In this
way a type of reaction path is obtained by fixing the
selected coordinate and minimizing the PES with respect
the remaining coordinates. The maximum energy point
of this path is normally very close to the desired tran-
sition state; consequently by taking this point and using
the eigenvector-following approach convergence to the
transition state is achieved in a few steps. The
eigenvector-following technique is based on a type of
quasi-Newton algorithm such that the Hessian matrix
possesses a negative eigenvalue and it is assumed that its
associated eigenvector possesses a topological structure
very similar to the desired transition vector. This fact
combined with the restricted step is the basis of the
eigenvector-following technique.

The difficulty in the eigenvector-following algorithm
appears when the starting point is far from the desired
transition state and the Hessian matrix does not posses a
single eigenvector with a negative eigenvalue [14]. In this
situation one selects an eigenvector and the corre-
sponding eigenvalue is forced to be negative; the rest of
the eigenvalues are forced to be positive. On the other
hand, the problem associated with the driving-coordi-
nate method resides in the correct selection of the
dominant coordinate, otherwise one will obtain a non-
continuous path [15, 16, 17, 18, 19].

Taking the advantages of both techniques, the driving
coordinate and the eigenvector-following algorithm, we
propose a method based on walking up valleys/the
eigenvector-following algorithm but with the structure
of a driving coordinate. In this way the components
of the direction vector for walking up valleys or the
eigenvector to follow only are the dominant coordinates
of the reaction under study. Recently, a similar tech-
nique has been proposed but using the philosophy of the
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gradient line reaction path concept [20, 21]. The pro-
posed method is based on the technique of walking up
valleys developed by Cerjan and Miller [4] and modified
by Culot et al. [12]. We note that the walking up valleys
technique is in fact a Newton—Raphson algorithm such
that the Hessian matrix is shifted. The shift parameter is
evaluated in such a way that the shifted Hessian matrix
preserves the desired number of negative eigenvalues and
the resulting step falls in a trust region. The trust region
is the region where the current quadratic expansion
is valid. The so-called rational function optimization
(RFO) technique [7] is very close to the walking up
valley method, the only difference is that the shift
parameter is evaluated as a scalar product between
the displacement and gradient vectors.

The article is organized in the following way. In
Sect. 2 we briefly present and analyze the driving-coor-
dinate method through the concept of a reduced PES.
The mathematical structure of the walking up valley/the
eigenvector-following algorithm when used in a reduced
PES is described in Sect. 3. An algorithm is also outlined.
Finally, in Sect. 4 we present and analyze some examples.

2 The reduced PES

During the evolution of a chemical reaction, some
subsets of coordinates present very large changes,
whereas for the rest of the coordinates the variation
is very small. From this observation we can regard
a chemical reaction as a limit system in that some
coordinates are associated with the “driving force” of
the reaction and the remaining coordinates are in
adapted equilibria during the process. An example of
this behavior can be seen in the conformational transi-
tions of peptides which are dominated by the changes of
some torsional angles [14]. However, we emphasize that
many chemical reactions do not occur through this type
of path; consequently the evaluation of this path is only
to locate the transition state. This model of chemical
reaction can be written mathematically as

V(q,) = rr;‘i’nE(qr’qp) : (1)

where E is the potential energy, q, denotes the subset of
“driving force” coordinates, i.e., the coordinates that
present the large change in the reaction, and g, is the set
of coordinates that are “‘equilibrium-adapted’ during all
the path. Note that ¥ (q,) is the energy of a point on the
reduced PES (RPES). On each point of the RPES the q,,
coordinates are a function of the q, coordinates. The
equilibrium condition is given by the relation

B op;
where m is the length or dimension of the q, vector.
Equations (1) and (2) are the basis of the driving-
coordinate method [15, 17, 18, 19]. Now we are looking
for an explicit mathematical form of Eq. (1) that can be
used for future purposes. In order to do this we write an
express1on for the potential energy £(q;,q,) by expand—
ing its q = (q,,q,) dependence to second order about q°

=1,...,m, (2)

E(q,,9q,) — (qr,qp) 0O(Aq,,Aq,)
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Note that r; = (q,);, p; = (q,);» g is the g, part of the

gradient vector evaluated at q°, and the number 7 is the
length or dimension of the q, vector. Now we apply
the Schur transformation [24] on Eq. (3). The Schur
transformation is defined as

0 0 -1 =0
(F Frp> (1. F, (ng) (F 0rp>
0 RO 0
For Fpp 0y Iop L
L. Orp

—1 s
(F) Foe T

where
0 -1
Frr = F?r - F?p (ng) Fgr (9)

is the reduced or effective Hessian matrix evaluated at
q°. The Schur transformation is not an orthogonal
transformation; however, it possesses the following

property
Irr Orp Irr Orp

-1 -1
0 0 0 0
(Fpp) Fpr IPP - (Fpp) Fpr IPP

B L 0rp
Opr IPP '

The use of this type of transformation rather than an
orthogonal transformation is because the Schur trans-
formation does not mix the two subsets of coordinates
(note that in general this is not possible using an
orthogonal transformation). Substituting Eq. (8)
Eq. (3) and taking into account Eq. (10) we get

(10)
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Now, if we start at a point such that gp =0, and g’ #0,
then Eq. (14) is reduced to g° =g’ and from Eq. (15)
g> =0, If under these conditions we minimize
Q)(Aq?,Aq ) given in Eq. (11) with respect to Aqp, we
obtain the desired form for the RPES as defined in
Eq. (1) as a function of the set of driving coordinates,
Aq°, up to second order:

1 _
r9(q,) = E(al.a}) + (Aa)) g+ (Ad?) 'FrAq? .

(16)
Since Ag) = 0, from Eq. (13) we get

—1
0 _ 0 0 0
agh = —(F5,) FoAq . (17)

Equation (17) tells us that on the RPES defined by the
driving coordinates, the set of adapted coordinates, q,,
are a function of the set of driving coordinates, q,. The
relation between both sets of coordinates is linear
because the RPES is expanded to second order. An
important feature is that since the F° matrix is
positive-definite it is possible to prove that the number
of negative eigenvalues of the full Hessian matrix
is equal to the number of negative eigenvalues of
the reduced or effective Hessian matrix, F_. [25, 26].
Consequently, a stationary-point-character minimum
on the RPES is also a stationary-point-character
minimum on the full PES; on the other hand, a
stationary-point-character first-order saddle point on
the RPES is also a stationary point of the same
character on the full PES [21, 22].

3 The search for the first-order saddle point
on the RPES

3.1 Mathematical basis

The walking up valley algorithm was initially proposed
by Cerjan and Miller [4]. The purpose of this method is to
find a first-order saddle point by preserving during the
search the correct number of negative eigenvalues of the
Hessian matrix and in addition to ensure that the current
quadratic model is valid in some region of the real PES.
This algorithm is an extension of the Levenberg—Mar-
quart technique to locate a minimum on a surface [23].
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An algorithm that takes all these features into account
should be based on the following Lagrangian function [4]

T
L(Aq?Aqg,i) = (Aq)) g0+ (Aqg) g
1 T T F(r)r F?p Aq?
_ 0 0
A (o] (3 27 ) (%
1. T 1] { Aq®
_Eﬂ{[(Aq?) (Ag?) ](Aqg> _Rz},

(18)

where R is the radius of a ball that characterizes the trust
region. Now, if we the start at a point such that gg =0,

the stationary conditions of the Lagrangian function of
Eq. (18) are

<or>: @), [(Fr Fo _}L<In orp) Aq!
0, 0, . F 0, ILpp Aq))

(19)

o[ oa)](8)r

From Eq. (19) we obtain the relation between Aq and
Aq’; this relation is

-1
Agh = — (Ko, = 7l ) FpAdq? . (21)

Substituting Eq. (21) in Eq. (18) and taking into account
that gg =0, we obtain the new Lagrangian function,
which is only a function of the Lagrangian multiplier
/. and Aq":

I
L(Aq?.2) = (Aq)) gl + 5 (Aa?) "

-1
x {F?r — L, — F, (ng - upp) Fgr]

1
x AQ® + E;tkz : (22)

Equation (22) is the Lagrangian function given in
Eq. (18) but applied to a RPES. Equation (22) is difficult
to evaluate since the quadratic part depends of the
Lagrangian multiplier in a complicated way. To deal
with this problem we substitute the equality

()= () 'S ()] e

up to first order with respect to 4 in Eq. (22). After some
rearrangement one obtains

L(Ad?. ) = (A)"80 + 5 (Ad?) TFAG)
- 57y S0} -] 4)
where

2
St = s + i, (F0,) FS, (25)
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Note that the S° matrix is positive-definite. The
stationary conditions of the approximated Lagrangian
function given in Eq. (24) are

0r = g(r) + (Fi*)r - is?r) Aq? ) (26)
0= (Aq?)"S%Aq — R? (27)

To solve this set of equations (Eqgs. 26, 27) we make the

following matrix transformations: A(:](r) = (S?r)l/ 2Aq?,

-0 -1)2 =0 /250 1/2 .

g = (S)) ""g, and F = (S)) "F.(S)) "". With

these transformations the stationary conditions

(Egs. 26, 27) take the usual form

0, =& + (Fy — 21, ) A4, (28)
(A= T =0 2

These sets of equations are solved in the normal way
[4, 6, 7,8, 12, 13]. From these equations it is possible to
show that there are a maximum of n + 1 and a minimum
of two 4 parameters; consequently it is necessary to have
a criterium in order to select the adequate parameter.
The A parameter shifts the Hessian matrix: the effect of
this shift is to preserve or achieve the correct structure
of the shifted Hessian matrix 1n such a way that the
resulting displacement vector, Aqr, possesses the correct
direction to locate the desired transition state [7, 8, 12,
13, 27]. In the RPES model the parameter A should
selected in a way that the FO matrix preserves its
positive character during all the search. On the other
hand, the effect of the parameter 4 on the reduced or
effective Hessian matrix, F,,, depends on the character,
the number of negative and positive eigenvalues, of this
effective Hessian matrix. Near a stationary-point-type
minimum the F_ matrix is positive-definite; in this
situation 4 is selected such that the resulting shifted
effective or reduced Hessian matrix is totally negative-
definite, in others words all its eigenvalues are negative
In this case the computed displacement vector, Aqr, is
ascending in all the directions that define the RPES.
In this srtuation looking at the full PES, the direction of
the Aq” vector is monitored by both the subset of the q,
coordinates and the subset of the q, coordinates. These
q, coordinates follow the q; coordinates according
to Eq. (21). Far from the minimum region and owing to
the continuity of the Hessian matrix function with respect
to the coordinates, there is a point on this continuous walk
such that the corresponding reduced or effective Hessian
matrix possesses a negative eigenvalue. In this case 4 is
selected in such a way that the resulting shifted, reduced
Hessian matrix possesses a negative eigenvalue and only
one. In others words we select the A that preserves the
character of the reduced or effective Hessian matrix in
order to converge to a first-order saddle point. Note that
under this requirement the full Hessran matrix has a
negative eigenvalue since the F. matrix is positive-
definite during all this walk. Sometimes, in the region
where the reduced or effective Hessian matrix, F,
already possesses a negative eigenvalue in the next step,
this matrix has two negative eigenvalues; in this case 4 is

selected in a way that the shifted reduced Hessian matrix
has a negative eigenvalue. All these previous consider-
ations were taken from the analysis of the RFO method
to locate first-order saddle points [7, 12, 13, 27].

The trust radius defines the validity region of the
current quadratic model around the current point with
respect to the real PES expanded around this point.
Since both the real surface and the quadratic model
change during the search process it is necessary that the
trust radius also changes during the optimization. In the
present method we used the algorithm described by
Culot et al. [12] to modify the trust radius, R.

Another important point related to the algorithm is
the initiation step. This initiation step is completely
similar to that described in Ref. [21]. The geometry pa-
rameters of both reactant and product in nonredundant
internal coordinates are defined in the same manner. The
subset of parameters that show the largest difference
between reactant and product are selected as q and the
rest of the pdrdmeters define the qp vector. Normally the
dimension of the q” vector is 1, 2, or 3. Since both
the reactant and the product are stationary points on
the PES they cannot be used as initial steps. In this first
step the vector q° is perturbed by a small amount,
Q@+ Aq At this new perturbed point the gradient
vector and the Hessian matrix are computed and the
energy is minimized with respect to the q° coordinates
The resulting q,, coordinates together with the q + Aqr
coordinates configure the starting point. The resulting
geometry with the corresponding gradient vector and
Hessian matrix are taken as initial points to start the
search process to locate the transrtion state. Note that
the sign of the variation of the Aqr vector depends on the
direction of the search, i.e., it depends if one goes from
reactant to product or Vice versa.

3.2 Algorithm

Now we describe briefly an algorithm based on the
results of the previous subsection.

1. With the slightly perturbed geometry parameters
from reactant or product, compute the energy,
gradient vector, and the Hessian matrix. Note
that the gradient vector has the structure
(g") = [(g))", (gp) ). where g) # 0; and g} = 0,

2. With the partitioned blocks of the Hessian matrix

F°, F?p, and F_ build the reduced or effective Hessian
matrix, F., according to Eq. (9) and the metric

matrix, S, according to Eq. (25).
3. Build and solve the set of Eqgs. (28) and (29). This is
done by projecting Eq. (%8) on the set of eigenvectors

that diagonalizes the F, matrix and the resulting
equation is substituted in Eq. (29) obtaining

R = () o (R - ) ()

In Eq. (30) the U?r matrix contains the eigenvectors

(30)

and the diagonal matrix ?(:r the eigenvalues of the 127?r
matrix. The solution of Eq. (30) is done by the
Hebden procedure [23]. Briefly, the Hebden proce-



dure in nothing more that a Newton—Raphson
method for 4 to solve Eq. (30). Once time A param-
eter has been computed using Eq. (28) the Aﬁ? vector

is evaluated; finally, using this vector and the (S?r)_l/2

matrix the Aq? displacement vector is obtained. 1 is
selected according to the previous discussion. Using
Eq. (17) compute the Aqg displacement vector.

4. With the new geometry compute the corresponding
new energy and test the validity of the trust radius
[12]. If the trust radius used does not represent the
best region for the present quadratic model reject the
new point and with the new trust radius go to step 3
to evaluate a new A parameter and consequently a new
geometry displacement vector. Otherwise compute
the new gradient and test the convergency criterium.
Stop the process if the convergency criterium is
fulfilled: the transition state has been reached.

5. With the geometry displacement vector and the
gradient variation vector update the Hessian matrix.
The Murtagh—Sargent—Powell [28] formula is used to
update the Hessian matrix since it has been shown
that this formula preserves the nonpositive character
of the Hessian matrix [29], which is a basic condition
to locate any transition state. The resulting Hessian
matrix update is checked using the procedure recently
proposed by Eckert and Werner [30].

6. At the new point, normally the corresponding g,
vector is slightly different from the zero vector,
violating the condition of the RPES; consequently
a minimization is carried out with respect to the g,
parameters. During this minimization the q, geometry
parameters are fixed. Note that in this minimization
process the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) [23] formula to update the Hessian matrix
cannot be used since this Hessian is not positive-
definite. In the next subsection we describe a formula
to update the Hessian matrix for this special case.
When the minimization is finished the new point
satisfies the RPES condition, i.e., g, # 0; and g, = 0,.
Then, with this new gradient vector and Hessian
matrix go to step 2.

3.3 A Hessian matrix update formula applied
to energy minimization with respect to a subset
of variables

We are dealing with the problem to minimize the energy
with respect to some subset of variables and the rest of
the variables are fixed during the minimization process.
In addition the full Hessian matrix, F, is not positive-
definite but the Hessian part associated with the
nonfixed variables, Fpp, is positive-definite during all
the optimization process. During this type of minimiza-
tion process the full Hessian matrix should preserve
these two conditions. Note that in this type of minimi-
zation the gradient components associated with the fixed
variables change. So far any Hessian matrix update
formulae used in minimization algorithms does not
satisfy all these requirements since the BFGS formula
widely used in minimization algorithms forces all the
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Hessian matrix to be positive [23, 31]. However, the Fp,
submatrix should be updated by a BFGS-type formula
in order to get efficiency in this partial or restricted
minimization. Consequently we propose a new Hessian
matrix update formula that satisfies all the conditions
mentioned earlier; as will see later the resulting formula
is very close to the BFGS formula and consequently its
behavior will be very similar.

The most general formula to update any type of
symmetric Hessian matrix is [29, 32]

F =F + Eou) + B} — (£l Agqy)uou] , (31)

where F is the full Hessian matrix evaluated at q°. If
Eq. (31) is applied in a partitioned PES, such as the
RPES presented earlier, the components of this formula
are defined in the following way:

- <E?> (&—g?) <F?r F?p><Aq9>
20= |20 | T o]~ o] >
= g & F. F) )\ Aqg

(32)
u) MA(°
u, (Aq°) MAq°
B 1 (Mrr Mrp) Aq) (33)
(AQO)TMA‘IO M, My, Aqg ’

where M is a symmetric and positive-definite matrix.
Taking into account the fact that during the minimiza-
tion process Aq” = 0, a possible solution of the problem
consists of selecting an M matrix such that
M,, = (Mpr)T =0,,. With this type of M matrix
u! = 0, and the partitioned form of the update formula
given in Eq. (31) takes the following structure

Fi. = F?r ) (34)
0 =0/ 0 T

Frp = Frp + = (up) ’ (35)
T

For = FO +ul(2) (36)

}ug (ug)T . (37)

In Egs. (34), (35), (36), and (37) the M,, submatrix does
not appear; only the M, submatrix appears through the
ug vector. Owing to this fact we are only interested in the
mathematical structure of the My, submatrix. It is very
well known that for energy minimizations the BFGS is
the best formula to update the Hessian matrix; conse-
quently we select the M, submatrix so that we obtain an
update formula very close to the BFGS formula. In this
case the M, matrix takes the following form [31]

M,, = aF,, + bF"

0 (38)

where a + b =1 and a,b > 0 and the matrices F°_ and
F,, are assumed to be positive-definite. With these
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Hs (005234

1.107

Reactant

Fig. 1. The geometry parameters of the reactant and transition
state (TS) for the isomerization reaction H;CNH — HCNH,. In
parentheses the perturbation of the selected “‘reaction coordinate”,
H;C,N; bond angle. The bond lengths are given in angstroms and
the bond and dihedral angles in degrees

definitions and the quasi-Newton condition applied on
the q,, variables, F) Aq) = g, — g, the ul vector is

: a(g, ~ ) + bF},Ad)
u, = T T . (39)
a(Aqg) (gp — g%) + b(Aqg) F,,Aq}
The scalars a and b are not computed in the usual way
[31]: they are evaluated according to the following

formulae
{(gp B g?’)TAqg} 2 (40)
a = )
(50 22) (20— ) (201) Aat
b=1-a . (41)

The resulting update for the Fp, matrix is very close to
that obtained using the BFGS formula.

4 Examples and analysis

The algorithm described in the preceding section was
implemented in a modified version of the MOPAC
program [33, 34]. The transition-state searches of all the
chemical reactions described here were calculated using
the corresponding wavefunction and the Austin model 1
(AM1) [35] semiempirical Hamiltonian. The convergence
criterion was on the maximum component of the gradient
vector, 1073 kcal mol~! A=! —kcal mol~! rad~!. The
initial perturbation vector, Aq,, of the first step was 0.1 A
for bond lengths and 1.0° for bond and dihedral angles.
Following Eckert and Werner [30], if the root-mean-
square deviation of the Hessian matrix before and after
update _ is larger than 0.5 kcal mol~!  A~2 — kcal
mol~! A~! rad~! — kcal mol~! rad~? then the Hessian
matrix is computed in a normal way rather than updated.

Hs [00]534

[180.0}432,
H,
0.995

Transition State

4.1 The isomerization reaction H;CNH — HCNH,

This reaction was studied by Andzelm et al. [36] using
density functional theory; however, we present the
results of this reaction using the AM1 model within
the Cs point group of symmetry. The initial perturbed
and nonperturbed reactant geometry and the final
transition-state molecular geometry are shown in
Fig. 1. The selected “‘reaction coordinate” corresponds
to the bond angle H;C,N3; the rest of the geometry
parameters are the set of coordinates that are “equilib-
rium-adapted” during the process. The method reaches
the desired transition state within 16 iterations or steps.
The behavior of the heat of formation and the maximum
component of the gradient vector during the search
process is presented in Fig. 2. We note that from

~-© - Heat of Formation
—8 - Maximum Component of Gradient Vector
— o - The Bond Angle Reaction Coordinate

120 ~
100 —
80 [
60
40
20 [-
0 : Ed/? s 1 1 m {b o PR
0 5 10 15 & 20
Step Number TS

Fig. 2. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “reaction coordinate”
H;C,;Nj; bond angle with respect to the steps of the location process
of the TS for the isomerization reaction H,CNH — HCNH,
according to the proposed method. The heat of formation is given
in kcal mol™!, the gradient component in kcal mol~' A~!— kcal
mol~! rad~!, and the bond angle in degrees



iteration 8—10 the heat of formation also presents a
strong variation at the steps the gradient vector presents
the largest maximum component. It is interesting to note
that after iteration 10 the reduced or effective Hessian
matrix, given in Eq. (9), shows a negative eigenvalue.
Also in Fig. 2 we show how the ‘“‘reaction coordinate”
changes during the search process: the H{C,N; bond
angle takes practically the transition-state value after
iteration 10.

Now we compare the behavior of the present algo-
rithm with the algorithm described in Ref. [21], which
briefly consists of reaching a transition state following a
type of steepest ascent—descent path. The behavior of the

~—&—— Heat of Formation .
—~8 - Maximum Component of Gradient Vector
— ¢~ - Bond Angle Reaction Coordinate

150

N
Z/
Lol ~ \\
100 |- o
50 -
: ]
0o [= !
50 T TS R Lo |
0 0.5 I s A 2

Arc Length, s (A - rad) TS

Fig. 3. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “reaction coordinate”
H;C;N; bond angle with respect to the arc length for the
location process of the TS for the isomerization reaction
H,CNH — HCNH; according to the method proposed in
Ref. [21]. The heat of formation is given in kcal mol~', the
gradient component in kcal mol~' A~! — kcal mol~! rad~!, and
the bond angle in degrees
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heat of formation, that of the maximum component of
the gradient vector, and that of the H;C,;N; bond angle
with respect to the arc length of the path, s, are shown
in Fig. 3. We observe that for 1.3 <s < 1.5, both the
heat of formation and the maximum component of
the gradient vector take the largest value. At s = 1.5, the
reduced or effective Hessian matrix presents a change of
sign from positive to negative. Finally, comparing
Figs. 2 and 3 we see that the H;C,N3 bond angle takes
different values for each curve. This means that the path
of the present algorithm and that described in Ref. [21]
are different.

4.2 Ring closure of vinylketene rearrangement

A detailed theoretical study of this reaction was reported
by Nguyen et al. [37] at the ab initio level of theory. The
location of the transition state using the proposed
method was done by employing the AM1 semiempirical
Hamiltonian. The molecular geometry parameters of cis-
vinylketene and the transition state are shown in Fig. 4.
The C,Cg bond length and the HyCgC¢C4 dihedral angle
were selected as “‘reaction coordinate” parameters. The
initial values for these two parameters are given in
parentheses in Fig. 4. Note that the corresponding initial
perturbation for these two parameters is very small and
the sense of this perturbation is that it goes from
vinylketene to cyclobutenone. The behavior of the heat
of formation and that of the maximum component of
the gradient vector during the location of the transition
state are shown in Fig. 5. The largest value of the
maximum component of the gradient vector is reached
at iteration 12. On the other hand, the heat of formation
varies from the first iteration to iteration 28: at this step
the algorithm reaches the converged value. During the
location process of the transition state, the reduced or
effective Hessian matrix achieves a negative eigenvalue
at iteration 15. Finally, in Fig. 5, we present the
variations of the two ‘“‘reaction coordinates” during
the search process; these two “‘reaction coordinates’™ are
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Fig. 5. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “reaction coordinates”
C,Cs bond length and HoCsCeCy4 dihedral angle with respect to the
steps of the location process of the TS for the ring closure of the
vinylketene rearrangement according to the proposed method. The
heat of formation is given in kcal mol~!, the gradient component in
kcal mol~' A~! — kcal mol~! rad~!, the bond distance in A, and
the dihedral angle in degrees

labeled as the bond length reaction coordinate for the
C,Cs bond length and the dihedral angle reaction
coordinate for the HgCgC¢C, dihedral angle. The C,Cg
bond length achieves the value of the transition state
at iteration 33 and the HyCgCyqC4 dihedral angle is
stabilized at step 36. Owing to the scale reduction in
Fig. 5 is not possible to appreciate the variation of the
C,Cs bond length; however, it changes from 2.85 A at
the reactant to 2.10 A at the transition state.

The variations of the heat of formation, the maxi-
mum component of the gradient vector, and the
“reaction coordinates” of the C,Cg bond length and the
HyCgCsC4 dihedral angle with respect to the arc length,
s, using the method described in Ref. [21] are shown in
Fig. 6. By comparing this figure with Fig. 5, we con-
clude that both the present algorithm and that described
in Ref. [21] use different paths to reach the transition
state.
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Fig. 6. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “‘reaction coordinates”
C,Cs bond length and HoCsCgC4 dihedral angle with respect to the
arc length for the location process of the TS for the ring closure of
the vinylketene rearrangement according to the method proposed
in Ref. [21]. The heat of formation is given in kcal mol~!, the
gradient component in kcal mol~' A~! — kcal mol~! rad™!, the
bond length in A, and the dihedral angle in degrees

4.3 Ring opening of cyclopropyl radical rearrangement

This reaction was studied by Olivella et al. [38] at the
ab initio level of theory. We locate the transition state
by using the AM1 semiempirical Hamiltonian and the
proposed method. The molecular geometry parameters
of the reactant, the slightly perturbed reactant, and
the located transition state are shown in Fig. 7. The
variation of the heat of formation and the maximum
component of the gradient vector in the location process
of the transition state are given in Fig. 8. In order to
locate the transition state two geometry parameters were

Fig. 7. The geometry parameters of the reactant and TS for the
ring opening of cyclopropyl radical rearrangement. In parentheses
the perturbation of the selected “reaction coordinates” C;C,C;
bond angle and H4C,;C,C; dihedral angle. The bond lengths are
given in angstroms and the bond and dihedral angles in degrees
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Fig. 8. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “‘reaction coordinates”
C|C,C5 bond angle and H4CC,C5 dihedral angle with respect
to the steps of the location process of the TS for the ring opening
of cyclopropyl radical rearrangement according to the proposed
method. The heat of formation is given in kcal mol~!, the gradient
component in kcal mol~! A~! — kcal mol~! rad~!, the bond angle
and the dihedral angle in degrees
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Fig. 9. The evolution of the heat of formation, the maximum
component of the gradient vector, and the “‘reaction coordinates”
C,C,C; bond angle and H4C;C,C; dihedral angle with respect to
the arc length for the location process of the TS for the ring
opening of cyclopropyl radical rearrangement according to the
method proposed in Ref. [21]. The heat of formation is given in
kcal mol™!, the gradient component in kcal mol~! A~! — kcal
mol~! rad~!, the bond angle and the dihedral angle in degrees

used as a “‘reaction coordinates”; namely, the C;C,C;
bond angle and the H4C;C,C; dihedral angle. The
behavior of these two geometry parameters during the
location process is also presented in Fig. 8. The heat
of formation is stabilized after step 5. The reduced or
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effective Hessian matrix possesses a negative eigenvalue
after step 4.

In order to compare the present method with that
described in Ref. [21], we show the behavior of the heat
of formation, the maximum component of the gradient
vector, and the “‘reaction coordinates” C;C,Cs; bond
angle and the H4C{C,C; dihedral angle with respect to
the arc length, s, according to that algorithm [21] in
Fig. 9. As in the previous examples, both algorithms
converge to the same transition state; however, the paths
are different.

5 Conclusions

We have proposed a method to locate transition states
starting from both slightly perturbed geometry reactants
or products. The search is carried out on a RPES defined
by the subset of variables labeled ‘“‘reaction coordinate”;
the rest of variables are minimized with respect to the
energy. The method converges to the transition state
normally within a reasonable number of steps. From the
behavior of the present method compared with that
proposed in Ref. [21] we say that they are very similar;
however, they define different paths to walk from the
minimum to the transition state.
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